Resequencing of IRS2 reveals rare variants for obesity but not fasting glucose homeostasis in Hispanic children.
نویسندگان
چکیده
Our objective was to resequence insulin receptor substrate 2 (IRS2) to identify variants associated with obesity- and diabetes-related traits in Hispanic children. Exonic and intronic segments, 5' and 3' flanking regions of IRS2 (∼14.5 kb), were bidirectionally sequenced for single nucleotide polymorphism (SNP) discovery in 934 Hispanic children using 3730XL DNA Sequencers. Additionally, 15 SNPs derived from Illumina HumanOmni1-Quad BeadChips were analyzed. Measured genotype analysis tested associations between SNPs and obesity and diabetes-related traits. Bayesian quantitative trait nucleotide analysis was used to statistically infer the most likely functional polymorphisms. A total of 140 SNPs were identified with minor allele frequencies (MAF) ranging from 0.001 to 0.47. Forty-two of the 70 coding SNPs result in nonsynonymous amino acid substitutions relative to the consensus sequence; 28 SNPs were detected in the promoter, 12 in introns, 28 in the 3'-UTR, and 2 in the 5'-UTR. Two insertion/deletions (indels) were detected. Ten independent rare SNPs (MAF = 0.001-0.009) were associated with obesity-related traits (P = 0.01-0.00002). SNP 10510452_139 in the promoter region was shown to have a high posterior probability (P = 0.77-0.86) of influencing BMI, fat mass, and waist circumference in Hispanic children. SNP 10510452_139 contributed between 2 and 4% of the population variance in body weight and composition. None of the SNPs or indels were associated with diabetes-related traits or accounted for a previously identified quantitative trait locus on chromosome 13 for fasting serum glucose. Rare but not common IRS2 variants may play a role in the regulation of body weight but not an essential role in fasting glucose homeostasis in Hispanic children.
منابع مشابه
PCSK1 rs6232 Is Associated with Childhood and Adult Class III Obesity in the Mexican Population
BACKGROUND Common variants rs6232 and rs6235 in the PCSK1 gene have been associated with obesity in European populations. We aimed to evaluate the contribution of these variants to obesity and related traits in Mexican children and adults. METHODOLOGY/PRINCIPAL FINDINGS Rs6232 and rs6235 were genotyped in 2382 individuals, 1206 children and 1176 adults. Minor allele frequencies were 0.78% for...
متن کاملEffects of Genetic Variants in ADCY5, GIPR, GCKR and VPS13C on Early Impairment of Glucose and Insulin Metabolism in Children
OBJECTIVE Recent genome-wide association studies identified novel candidate genes for fasting and 2 h blood glucose and insulin levels in adults. We investigated the role of four of these loci (ADCY5, GIPR, GCKR and VPS13C) in early impairment of glucose and insulin metabolism in children. RESEARCH DESIGN AND METHODS We genotyped four variants (rs2877716; rs1260326; rs10423928; rs17271305) in...
متن کاملExome sequencing reveals novel genetic loci influencing obesity related traits in Hispanic children
OBJECTIVE To perform whole exome sequencing in 928 Hispanic children and identify variants and genes associated with childhood obesity. METHODS Single-nucleotide variants (SNVs) were identified from Illumina whole exome sequencing data using integrated read mapping, variant calling, and an annotation pipeline (Mercury). Association analyses of 74 obesity-related traits and exonic variants wer...
متن کاملIrs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis★
Insulin receptor substrates (Irs1, 2, 3 and Irs4) mediate the actions of insulin/IGF1 signaling. They have similar structure, but distinctly regulate development, growth, and metabolic homeostasis. Irs2 contributes to central metabolic sensing, partially by acting in leptin receptor (LepRb)-expressing neurons. Although Irs4 is largely restricted to the hypothalamus, its contribution to metaboli...
متن کاملIRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action.
Irs2-mediated insulin/IGF1 signaling in the CNS modulates energy balance and glucose homeostasis; however, the site for Irs2 function is unknown. The hormone leptin mediates energy balance by acting on leptin receptor (LepR-b)-expressing neurons. To determine whether LepR-b neurons mediate the metabolic actions of Irs2 in the brain, we utilized Lepr(cre) together with Irs2(L/L) to ablate Irs2 e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 43 18 شماره
صفحات -
تاریخ انتشار 2011